[10] A. S. A. Nugraha, M. Kamal, S. Heru Murti, W. Widyatmanti, Accuracy assessment of land surface temperature
retrievals from remote sensing imagery: pixel-based, single and multi-channel methods, Geomatics, Natural Hazards
and Risk, 2024, 15, 2324975, doi: 10.1080/19475705.2024.2324975.
[11] S. K. Filippelli, K. Schleeweis, M. D. Nelson, P. A. Fekety, J. C. Vogeler, Testing temporal transferability of
remote sensing models for large area monitoring, Science of Remote Sensing, 2024, 9, 100119, doi:
10.1016/j.srs.2024.100119.
[12] R. Acharya, K. Samanta, K. N. Haque, S. Box, S. Sengupta, P. Bhattacharya, S. Kanthal, Climate change impact
on soil health and crop production, International Journal of Research in Agronomy, 2024, 7, 150-156, doi:
10.33545/2618060X.2024.v7.i4c.540.
[13] Y. Huang, Z. Chen, T. Yu, X. Huang, X. Gu, Agricultural remote sensing big data: Management and applications,
Journal of Integrative Agriculture, 2028, 17, 1915–1931, doi: 10.1016/S2095-3119(17)61859-8.
[14] R. Lottering, K. Peerbhay, S. Adelabu, Remote sensing applications in agricultural, earth and environmental
sciences, Applied Sciences, 2025, 15, 4537, doi: 10.3390/app15084537.
[15] W. Wetzel, The role of explainable AI in agriculture, Spectroscopy Online, 2025,
https://www.spectroscopyonline.com/view/the-role-of-explainable-ai-in-agriculture.
[16] R. Lottering, K. Peerbhay, S. Adelabu, Remote sensing applications in agricultural, earth and environmental
sciences, Applied Sciences, 2025, 15, 4537, doi: 10.3390/app15084537.
[17] A. Kumar, I. Singh, M. Kashyap, A. Kumar, N. B. Devi, S. Singh, S. Sharma, R. Pradhan Integration of machine
learning and remote sensing in crop yield prediction: A review, International Journal of Research in Agronomy, 2025,
8, 549–562, doi: 10.33545/2618060X.2025.v8.i1Sh.2496.
[18] M. F. Aslan, K. Sabanci, B. Aslan, Artificial intelligence techniques in crop yield estimation based on sentinel-2
data: a comprehensive survey, Sustainability, 2024, 16, 8277, doi: 10.3390/su16188277.
[19] B. Chhatria, S. Panda, S. Kumar Tarai, H. Dharua, S. Naik, Impacts of climate change on crop yield variability
and marginality: assessing vulnerabilities and adaptive strategies, International Journal of Research and Review, 2025,
12, 267-277, doi: 10.52403/ijrr.20250530.
[20] A. J. Atapattu, L. Perera, T. Nuwarapaksha, S. S. Udumann, N. Dissanayaka, Challenges in achieving artificial
intelligence in agriculture, In: Chouhan, S.S., Saxena, A., Singh, U.P., Jain, S. (eds) Artificial Intelligence Techniques
in Smart Agriculture. Springer, Singapore, doi: 10.1007/978-981-97-5878-4_2.
[21] Introduction to Remote Sensing. https://agricdemy.com/post/remote-sensing-introduction.
[22] Prism Sustainability Directory, AI-driven predictive models for climate-resilient agriculture, available at
https://prism.sustainability-directory.com/scenario/ai-driven-predictive-models-for-climate-resilient-agriculture/.
[23] V. Vani, P. Kummamuru, V. Mandla, Agriculture drought analysis using remote sensing based on NDVI-LST
feature space, Indian Journal of Ecology, 2028, 45, 6–10.
[24] M. Habib-ur-Rahman, A. Ahmad, A. Ahmad, A. Raza, M. Usama Hasnain, H. F. Alharby Hesham, Y. M.
Alzahrani, A. A. Bamagoos, K. R. Hakeem, Saeed Ahmad, W. Nasim, S. Ali, F. Mansour, A. EL. Sabagh, Impact of
climate change on agricultural production; issues, challenges, and opportunities in Asia, Frontier in Plant Science,
2022, 13, doi: 10.3389/fpls.2022.925548.
[25] F. Samadzadegan, A. Toosi, F. Dadrass Javan, A critical review on multi-sensor and multi-platform remote sensing
data fusion approaches: current status and prospects, International Journal of Remote Sensing, 2025, 46, 1327-1402,
doi: 10.1080/01431161.2024.2429784.
[26] Climate smart farming, Cornell Climate Stewards, https://climatestewards.cornell.edu/climate-smart-farming,
2018.
[27] K. Tang, H. Zhu, P. Ni, Spatial downscaling of land surface temperature over heterogeneous regions using random
forest regression considering spatial features, Remote Sensing, 2021, 13, 3645, doi: 10.3390/rs13183645.
[28] S. B. Cho, H. M. Soleh, J. W. Choi, W.-H. Hwang, H. Lee, Y.-S. Cho, B. K. Cho, B.-K., Kim, M. S., Baek, I., &
Kim, G. (2024). Recent Methods for Evaluating Crop Water Stress Using AI Techniques: A Review. Sensors, 2024,
24, 6313. https://doi.org/10.3390/s24196313.
[29] V. Solanky, S. Singh, S. K. Katiyar, Land surface temperature estimation using remote sensing data, In: Singh, V.,
Yadav, S., Yadava, R. (eds) Hydrologic Modeling. Water Science and Technology Library, 81. Springer, Singapore.
doi: 10.1007/978-981-10-5801-1_24.
[30] Robotics and AI: Remote Sensing. UK Agri-Tech Centre, https://ukagritechcentre.com/capability/robotics-and-
ai-remote-sensing/.
[31] D. Cho, D. Bae, C. Yoo, J. Im, Y. Lee, S. Lee, All-sky 1 km MODIS land surface temperature reconstruction
considering cloud effects based on machine learning, Remote Sensing, 2022, 14, 1815, doi: 10.3390/rs14081815.
[32] S. Saha, O. D. Kucher, A. O. Utkina, N. Y. Rebouh, Precision agriculture for improving crop yield predictions: a
literature review, Frontiers in Agronomy, 2025, 7, doi: 10.3389/fagro.2025.1566201.
[33] US EPA, O. Climate change impacts on agriculture and food supply, 2022,
https://www.epa.gov/climateimpacts/climate-change-impacts-agriculture-and-food-supply.
[34] D. Radočaj, J. Obhođaš, M. Jurišić, M. Gašparović, Global open data remote sensing satellite missions for land
monitoring and conservation: a review, Land, 2020, 9, 402, doi: 10.3390/land9110402.
[35] N. Sanders, Soil moisture: challenges, trends and AI, 2025, available at